AD=AO77 121 WISCONSIN UNIV=MADISON MATHEMATICS RESEARCH CENTER F/6 12/1
APPLICATIONS OF SOFTWARE FOR AUTOMATIC DIFFERENTIATION IN NUMER==gTC(U)
JUL 79 L B RALL DAAG29=TS5=C=0024

UNCLASSIFIED MRC=TSR=1976

Y

DU _FILE_COPY,

e
PR I B

ra » .
MRC Technical Summary Report #1976 ¢

APPLICATIONS OF SOFTWARE FOR AUTOMATIC
DIFFERENTIATION IN NUMERICAL
COMPUTATION

L. B. Rall

ApA077121

Mathewatics B=-2arch Center . v
University of Wisconsin—Madison

610 Walnut Street
Madison, Wisconsin 53706

July 1979

\ Q/L
(Received June 18, 1979)

Approved for public release
Distribution unlimited

Sponsored by

U. §. Army Research Office
P. 0. Box 12211

Research Triangle Park
North Carolina 27709

TSR TR—

fearpm
. T S A W S A oy st S— .

UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

A1 AT

APPLICATIONS OF SOFTWARE FOR AUTOMATIC DIFFERENTIATION
IN NUMERICAL COMPUTATION

L. B. Rall

Technical Summary Report #1976
July 1979

ABSTRACT

At present, software for formula translation is used routinely in numerical
computation. On the other hand, although software for differentiation of
formulas is easy to construct and widely available, many numerical analysts
seem to be unaware of its existence and potential for numerical computation.

A simple procedure for formula translation and differentiation will be described,
and some significant applications will be indicated. In ordinary computation,
these include solution of ordinary and partial differential equations by series
methods (Taylor and Lie series, for example), solution of nonlinear systems of
equations by Newton's method and its variants, and nonlinear optimization
{constrained and unconstrained). Together with interval analysis, differentia-
tion can be used to determine properties of functions and thus automate the ;
application of certain theorems, such as ones for existence of fixed points !
of n-dimensional operators or solutions of nonlinear systems of equations. :
Another large field of application of differentiation is to automatic error

analysis, either using the graph structure of the computation, or interval

analysis. An example is given of a program for numerical integration in which
automatic differentiation and interval analysis are combined to provide a

priori and a posteriori error bounds for the results.

N~

AMS (MOS) Subject Classifications: 65D30, 65G05, 65G10, 65H10, 65K10, 65L0OS,
65V0S, 68-04, 6BCOS, 68C20

Key Words: Automatic differentiation, Taylor coefficient generation, Error |
estimation, Differential equations, Nonlinear systems, Optimization,
Numerical integration, Interval analysis

Work Unit Numbers 7 (Numerical Analysis)
8 (Computer Science) !

E
g Research sponsored by the United States Army under Contract No. DAAG29-75-C-0024. !
|

24

et e AR A Y

\

R S AN G i

¥ e A St

SIGNIFICANCE AND EXPLANATION

Jo—— v,f\'.wam

Money can be saved by turning routine clerical tasks over to electronic
computers. Such work includes many of the details of computer programming
itself, and a number of high level languages have been introduced to assist with
the writing of software. One feature of these languages is formula transla-

. tion, which prepares subroutines to evaluate functions written in a notation
similar to that used in ordinary mathematics. Many scientific and engineering
calculations require derivatives of functions or coefficients of power series
expansions of functions. The formulation of subroutines to evaluate derivatives
of functions or Taylor coefficients can be performed by a computer in much the
same manner as formula translation. Software for these purposes has been
developed at the Mathematics Research Center over the past 15 years, and has
made the computer more useful.

This report describes techniques of automatic differentiation by list
processing, and the generation of Taylor coefficients by the use of recurrence
relations. A number of possible applications are mentioned, including the solu-
tion of differential equations, nonlinear systems of equations, constrained and
unconstrained optimization problems, and various methods for error euti-aﬁion.
Some of these have been implemented by actual software, and an example is

;' given of automatic error estimation for a numerical integration. 1In this latter

7 example, differentiation is used in combination with interval arithmetic. The
use of derivatives increases the applicability of interval arithmetic consider-
ably, as explained in this report. However, unlike interval arithmetic, software

b for differentiation can be written entirely in a high level language such as

FORTRAN, and thus is easily portable between installations. As indicated in this

report, the use of this software where appropriate can result in savings of time

g and effort, as well as a more effective approach to certain problems.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.

om0

TR s PN 7 AR AR R W AT P - TR SR 1IN NG LTS A e AL T G T4 AT BRI 2T T]

APPLICATIONS OF SOFTWARE FOR AUTOMATIC DIFFERENTIATION
IN NUMERICAL COMPUTATION

L. B. Rall

1. Introduction. At the foundations of numerical computation lie the means by
which calculations are actually done. Today, this means not only the computing
machines (hardware), but also the programs (software) available to the user.
This paper describes software for differentiation of functions and some of
1ts applications. Differentiation is somewhat similar to washing dishes,
a dull, uninteresting task best left to a machine. Two methods are given for
automatic differentiation, and their use in various programs for applications
is described. As the discussion is limited to actual experience at the
Mathematics Research Center over the past 15 years, no mention is made of much
fine software which has doubtless been developed elsewhere.

At the end of the paper, some conclusions concerning the past usefulness
of automatic differentiation will be given, together with some predictions of

possible future trends.

2. Differentiation by list processing. An approach to formula translation and

differentiation which is conceptually simple is provided by a list processing
technique. Rather than use a general purpose list processing language, how-
ever, it was considered more appropriate to develop software for the specific
purpose of evaluating and differentiating formulas. This technique, described
in the book by Rall (35, pp. 155~160], forms the basis of the program written
in 1965 by Reiter [40] and later extended by Gray and Reiter [15]) and
Wertz [45,46], the latter assisted by T. Ladner.

The principles are best illustrated by an example [35, pp. 155-156).
Suppose that one wishes to evaluate the function

(2.1) fix,y) = (xy + sin x + 4) (3y° + 6)

Research sponsored by the United States Army under Contract No.
DAAG29-75-C=0024.

o

pv—— e

e s e pe—

and some of its derivatives. The first step is to decode the formula
(2.2) F = (XeY + SIN(X) + 4)a(3aYan2 + 6)

corresponding to (2.1) into a sequence of arithmetic operations and calls to

subroutines. This gives the code list

Tl = XaY

T2 = SIN(X)
T3 = T1 + T2
T4 T + 4
TS Yaa2
T6 3aT5

T7 T™® + 6
4 T4«T7 .

Note that the code list is itself a sequence of statements in the same language

in wnich (2.2) is written, and hence can be translated by the same compiler

into machine language. Now, to dif:erentiate (2.3), the program refers to a

dictionary containing the derivatives of the arithmetic operations and sub-

routines called. For example, the entry corresponding to
(2.4) U2 = SIN(UL)
would be

(2.5) V1l = COS(Ul)
DU2 = V1*DUl

and so forth. Applying this procedure to (2.3), one obtains the code list for
the differential of F,

X+DY

V2 = DXsY

Ac 1 P
DT1 = V1 + V2 e U IR

NTIS GRA&I
V3 = COS(X) DDC TAB
DT2 = V3#DX Uzennounced

Justifrieation

———

DT3 = DT1 + DT2

DT4 = DT3 By

V4 = Yen]

1
(2.6) | e

VS = 2eV4 :
l

- | J\-JIICT‘G' N

DTS = VS*DY ' D1st ; by /01
ial

DT6 = 3*DTS f
DT7 = DT6 ; l‘i?
V6 = T44DT7 s NI
V7 = DT4+#

DF = V6 + V7

In order to obtain the code list for 3f/3x, for example, one sets DX = 1,
DY = 0 in (2.6) and obtains, after elimination of trivialities (multiplica-
tions by 1 or 0, exponentiation to the first power, addition of 0), the list

DXT1 = Y
DXT2 = COS(X)
(2.7) DXT4 = DXT1 + DXT2
DXF = DXT4#T7

In this case, the list for the derivative DXF is simpler than the list for F,
due to the polynomial terms in f(x,y). For nonpolynomial functions, one would
expect differentiation to yield more complex lists; however, polynomials
are not at all uncommon in the modelling and analysis of nonlinear problems.

The most important feature of differentiation by list processing is that
the output (2.7) is a list of exactly the same form as the input list (2.3),
and ~an itself be differentiated with respect to any variable entering into
it, simply by invoking the same processor. Also, if one needs only some high
derivative of a function, the lists for the intermediate derivatives can be
discarded after they are processed, or at least it is not necessary to

_woile them into machine language. This can result in a considerable saving

of computer time and storage locations.

It is instructive to view the procedure described above in terms of the
Kantorovich graph [17) which is equivalent to the code list. Figure 2.1
shows the graph corresponding to the list (2.3), Figure 2.2 the graph for
computing both F and its partial derivative DXF with respect to X.

To obtain a graph for the computation of DXF only, the nodes indicated by

squares in Figure 2.2 are unnecessary, and can be eliminated.

3. Automatic generation of Taylor coefficients. This is the approach adopted

by Moore et al. in 1964 [30] in connection with the solution of ordinary
differential equations by series, and was implemented by Reiter in 1965 [38]
and 1967 [41] as an independent program. Recursive generation of Taylor
coefficients is also incorporated in the more general program differentiation
software developed by Kedem (18], a system which is also capable of supervising

the list processing approach. To illustrate this method, the notation

2 L6

(3-1) f = f(xo)l f - f (xo)' T = 1.2,-:-'j '

0 b 1!

will be used for the first j + 1 Taylor coefficients of the function f(x)

at x = xo. (In case f depends on several variables, the derivatives in i
(3.1) are understood to be partial with respect to the variable of interest.)
The recursion relations for generating the successive Taylor coefficients

for the arithmetic operations and various functions are well known [27,

pp. 107-118; 19]. For example,

(3.2) (f9) = E £ g j =0,1,2,.

T=0 j-T

These relationships can be used to process the code list for the evaluation
of a function in the same way as the formulas for differentials were used in
the previous section.
To interpret this method in terms of the Kantorovich graph, suppose that
instead of simply values of terms, a vector consisting of the first 3j + 1
Taylor coefficients is received by each node along the edges coming into it
from above. This vector is then processed at the node by invokina the
corresponding recurrence relations, and the resulting vector is then
transmitted to the lower nodes connected to it. Using the graph in Figure 2 i, : ;
for example, one obtains the Taylor coefficients (3.1) by setting

Figure 2.1. The graph of the calculation

of f(x,y) .

BT S PR AR /4 =

e b e i

The graph of the calculation of
f(x,y) and fx(x.Y)-

A ——p—— oo

-

R =T

T P —

Xm0, 000000,
{3.3) 0

¥ =y ,0,0,...,0) .

At the node labelled T3, one would compute
(3.4) T3(TAU) = T1(TAU) + T2(TAU), TAU = 0(1)J ,

and so on. The Taylor coefficients of f considered as a function of y
may be obtained in the same way.

This method of differentiation has the advantage that only the evalua-
tion list (2.3) is needed. It is not possible to discard intermediate values
when only higher derivatives are wanted, and the list processing approach is
Letter adaptable to the computation of mixed partial derivatives. However,
1f Taylor series expansions with respect to one variable or only first
partial derivatives are required, then the method described in this section
is highly effective.

It 1s one thing to describe methods for automatic differentiation in a
general way as done here, but quite another to produce quality software for
this purpose, as has been done by Reiter, Gray, Wertz, and others cited in
this paper and elsewhere. Of course, although this software has performed
satisfactorily for a number of years, there is always the possibility of

improvement by making use of advances in computer science.

4. Some traditional applications of automatic differentiation. A number of

possibilities for the use of software for automatic differentiation come
to mind immediately. A few will be sketched here.

a. Solution of differential equations by series methods. The software
developed by Moore et al. in 1964 [30] and Braun and Moore in 1967 [3] is

based on the methods for Taylor series solution of ordinary differential
equations described in the papers ([25,26] and books (27,28] by Moore.
Although these programs were designed to be used with interval arithmetic

to rrovide automatic error estimates, they can be executed in ordinary real
(floating-point) arithmetic to obtain results which are competitive with
other methods of the same order. In particular, Moore [28]) refutes the
statement made in standard texts on numerical analysis [4, p. 214; 5, p. 330)
that "the necessity of calculating the higher derivatives makes Taylor's
algorithm completely unsuitable on high-speed computers for general integra-

tion purposes.”

S TR

o

b

The related technique of the Lie-series method for the numerical solu-
tion of differential equations also makes use of the automatic generation
of Taylor coefficients, as described by Knapp and Wanner [19]. The original
program [20], written in 1968, required the user to write the sequence of
subroutine calls corresponding to a code list of the form (2.3) for the
integrand. In 1969, automatic generation of the code list was added by
T. Szymanski, under the direction of Julia Gray, to obtain an improved program
[21]. Once again, the result is apparently competitive with Runge-Kutta
methods of the same order [19,37].

b. Solution of nonlinear systems of equations. A popular and effective

method for the solution of systems of n nonlinear equations in n unknowns,

4s1) !i(xl.xz,...,xn) = 0, 1 w58 sak B

is the Newton-Kantorovich algorithm [16,35). However, to implement this
method in such a way as to obtain quadratic convergence, one must calculate

2
the n° partial derivatives

afi
. B cnmi— 3
(4.2) fij Yt Led 1,2, s5.000
b
to obtain the n x n Jacobian matrix
= ' = '
(4.3) J £'(x) (f‘j) s

This is done by automatic differentiation in the 1967 program of Gray and
Rall [10] and the 1972 version prepared by Kuba and Rall [23] and described
in [131,35].

Higher order methods, such as Chebyshev's method and the inversion of

power series would require computation of the Hessian operator

2

[afi}
(4.4) B om £Y () »n] g
axjaxk
and perhaps higher derivatives [35]. The automatic formation of (4.4) is
implemented in the programs [10,23] in connection with verification of
existence of solutions of (4.1) and error estimation.

Another approach to the solution of the system (4.1) using derivatives
is a continuation or homotopy method based on the conversion of (4.1) into a

system of differential equations for a curve connecting an initial approxima-
-
tion X, for which f(xo) =y to a solution x . Such a system is, using

vector notation

dx
(4.5) J at Y
with the initial conditions x(0) = X Integrating (4.5) by some curve-

following technigque [24) from t =0 to t = 1 will give an approximation
L

to x(1) = x . The system (4.5) can be constructed using software for

differentiation.

¢. Optimization of nonlinear functionals. A problem arising frequently

in the applications of mathematics is to optimize (maximize or minimize) :

the value of a nonlinear functional

(4.6) g = g(xl,x .,,xn)

2'.

with sufficient smoothness, this can be converted into the problem of solving
the system (4.1) by taking the gradient

' RN
Bxl 3x2 3xn

and setting Vg = 0, which is (4.1) with fi(xl,xz,.
i=1,2,...,n. If one wants to solve this system by a method of Newton type,
then the Hessian matrix (Bzg/axiax) is required, which is simply the

j
Jacobian (4.3). In problems of this type, which are called unconstrained

..,xn) - aq/axi.

optimization problems, the formation of the gradient and the Hessian can be
automated by the use of software for differentiation.
Another type of optimization problem requires the satisfaction of condi-

tions

(4.8) ht(xl.x ,...,xn) =0, T)25k

2

which are called constraints. Given enough smoothness, the constrained
optimization problem can be reduced to the solution of a system of equations
of the form (4.1) by the introduction of new unknowns A ,A_ss..,A

e x’
called Lagrange multipliers. One obtains the nonlinear equations

3g E ahr
(4.9) + A b g 0' 1 = 1.2....,n '
axi gay Y 31‘

which, together with (4.8), form a system of order n + k to solve. The
equations (4.9) can be constructed by automatic differentiation as in the
unconstrained case, and, if desired, the entire system can itself be

differentiated to implement its solution by a method of Newton type.

5. Analysis of roundoff error using differentiation. A nontraditional

application of software for automatic differentiation in numerical analysis
would be the implementation of the method of Bauer [1] for the study of the
propagation of roundoff error. This technique is based on the use of

relative (logarithmic) differentials,

(5.1) pf = af/f, px = dx/x ,

and the corresponding relative derivatives

(5.2) pf/ox = xf'/f ,

and the code list or Kantorovich graph for f. The quantities needed for the
analysis of roundoff error in the calculation of the function defined by
(2.2) are available immediately from the code lists (2.3) and (2.4), for
example,

(5.3) RHOTS = DT5/TS .

Setting DX = XeRHOX, DY = YeRHOY would lead to a code list expressed
entirely in terms of relative differentials. According to Bauer [1], a

rounding error in the calculation of say, T4, is harmless if the input
condition number

(5.4) |RHOT4 /RHOX | >

or the output condition number

(5.5) |RHOF/RHOT4| < 1 .

Here, F 1is being considered to be a function of X only, with Y fixed.
Similar conditions can be formulated for functions of several variables [1]).
The significance of (5.4) is that a roundoff error in T4 does not exceed
the result of a corresponding error in X, while (5.5) means that an error
in T4 will not affect the final value of F by more than the same amount.
An application of these ideas would be to examine final or intermediate
condition numbers of several alternative graphs (or lists) for calculating

a
i

D &_vw«mwwmmm;%m -

the same functio. in order to pick one in which roundoff error is the least
malignant. 1In order to automate this process, one can use the existing
software or, perhaps better, write a list processor which produces relative

rather than ordinary differentials. For example, for

(5.6) U3 = Ule02 ,

the dictionary entry for the relative differential would be
(5.7) RHOU3 = RHOUl + RHOU2 ,

and 80 on.
Another direct application of automatic differentiation to roundoff
error analysis would be to automate the linearization technique due to

Stumme]l [(44) .

6. Computational verification of existence of solutions of systems of equa-

tions using interval analysis and automatic differentiation. Interval

analysis [27,28] provides a method for obtaining bounds for the ranges
of computable functions, 1ncludi5q poxtﬁxbations'aue to roundoff error in the
;1\ual computations. Software for computing with interval arithmetic was
developed side-by-side with differentiation software by Reiter (39,42],
starting in 1965. A modern package has been prepared by Yohe [47). Unlike
the programs for differentiation, which can be written in a high level
language, interval software was originally highly machine dependent, including
input and output [2!. Using advances in computer science, Crary and Ladner
{9}, Crary [6,7,8], and Yohe [48,49]) have been able to reduce this dependence
to a minimum, at the cost of speed.

For the present purposes, it is adequate to know that one can extend
numerical computations from ordinary numbers x to closed intervals
X = [a,b] (which include numbers if a = b). Execution in interval
arithmetic of a program for the calculation of a function f(x) will result
in an interval extension F(X) of €(x) such that

(6.1) f(x) € F(X), xe¢ X.
Thus, for |x! = |(a,b)] = max{|a]|,|b]}, one will have
(6.2) lttx)] < [Py, xex.

These results extend to finite dimensional spaces, using the maximum absolute

e, i i il

camponent norm for vectors, and the corresponding norm for matrices. In

R:. the closed ball with center y and radius p can be represented as an
interval,
(6.3) Uty,p) = {x : llx= yll_ <0} = [y = pe, y + pel ,

where e = (1,1,...,1).

An immediate application of these techniques is to automate some
theorems from classical and interval analysis on the existence of solutions
of systems of equations (4.1) and to obtain error bounds.

a. The contraction mapping theorem. Here, one transforms the system

(4.1), written in vector form as f(x) = 0, as a fixed point problem
(6.4) x = ¢(x)
for some operator ¢, for example, to use an iteration method

{(6.5) 'n#l - O(xn). Be0Y. 204000 »

starting from some initial approximation X, = Y. If ¢ 1is Lipschitz

continuous in some sufficiently large ball G(Y.o). that is,
(6.6) flox) ~o@) | <allx-z|l, x.ze¢ Uty.p) ,

then it follows from the theorem of Banach [35, pp. 64-74] that the sequence
- -
generated by (6.5) converges to a solution x ¢ U(y,p), provided

(6.7) p > le1 - xoll/u - a) .

In order to obtain the Lipschitz constant a, automatic differentiation
may be used to compile a program to evaluate the n ¥ n matrix
¢'(x) = (aoi/ax). Using interval arithmetic, the same program will compute

j o
the extension &'(X) on the interval X = U(y,p) defined by (6.3). If then

(6.8) a= |8'(x)] <1

and (6.7) holds, then the hypotheses of the contraction mapping theorem are
satisfied. This computation, if successful, also yields the error bound
fly = x.ll <p for y as an approximate solution.

b. The Kantorovich theorem on_ the convergence of Newton's method.
Newton's method, as applied to the system (4.1), may be written

(6.9) T R R T R A T

-12&

in vector form. The theorem of Kantorovich [16) requires the numbers
gl -1
B, 2 e an) 7l

computation, and a prschxtz constant K for f' on some sufficiently

y i Hx - xoll, both obtainable rigorously by interval

large ball X = U(y,p). The programs described in [10,11,23) use automatic
differentiation to obtain the bilinear operator f"(x) defined by (4.4).
Evaluation by interval arithmetic gives the extension F"(X) and the desired

Lipschitz constant

{(6.10) K= |[F*(x)| .
Now, 1if

1 1 -7/1-2n
(6.11) hy =8 K<, o2 n Ny *

L
then the Kantorovich theorem guarantees the existence of x such that
-
f(x.) = 0 in X, the convergence of the sequence generated by (6.9) to x ,
L]
and provides the error bound |ly - x || < p.

¢. An interval Newtcn's method. One may obtain an interval version of

Newton's method by setting

-1
E3 N - '
(6.12) T (m(xn) {(F (xn)l r(n(xn))} '

n=20,1,2,..., where n(xn’ is the midpoint of the interval Xn. as
described by Nickel [31] and Moore [27]. Here, xo can be an arbitrary
interval, not necessarily a ball, and the condition X C xn implies the

existence of a solution x € x . Once again, lutonatizldittotentiation and
interval arithmetic are used to obtain r'(xn). which is then inverted by
interval methods. Inversion of interval matrices is a tedious process, how-
ever, 80 (6.12) is of little practical importance. This computation is
available as an option in the program of Kuba and Rall ([23).

d. Moore's theorem. This is an interval theorem, based on the Krawczyk |

transformation

(6.13) K(X) =y - ¥Yf(y) + {I - YF'(X)} (X - y)

of an arbitrary interval X [22]). 1In (6.13), ye€ X and Y is an arbitrary,
nonsingular real (not interval) matrix. Once again, K(X) is computed

by automatic differentiation and interval arithmetic, and has been implemented
as an option in the program (23] by Julia Gray. If K(X) € X, then Moore's

= S

theorem [29) guarantees the existence of a solution x' € X, which, as in

the previous method, also yields error bounds for x. - m(X) or any other

approximate solution. Rall [36] has shown that the Kantorovich theorem has
little theoretical advantage over Moore's theorem, while the latter is much
less costly to apply. Hence, the elaborate implementation of the calcula-

tion of (6.10) in the programs [11,23] can be discarded.

It should be pointed out that the purpose of the methods and programs
described in this section is not to solve equations, but rather to guarantee
existence of solutions and give rigorous error bounds for approximate solu-
tions. This type of computation is expensive, but may be justifiable in

certain applications, such as the design of critical components of aircraft.

7. Automation of estimation of error of numerical integration and other

techniques of classical numerical analysis. In ordinary applications of

numerical analysis, error estimation is a tedious chore which should be
mechanized as much as possible. As errors in data, roundoff error, and
truncation error contaminate almost every actual computation, some analysis
of their effects 18 required in order to judge the reliability of the results
obtaine” Interval arithmetic is suitable for keeping track of data and
roundoff errors automatically. If expressions for the truncation error are
known in terms of derivatives, as in classical numerical analysis, then
automatic differentiation can be used in connection with interval arithmetic
to obtain bounds for truncation error. All of this is illustrated aptly by
the work of Moore on ordinary differential equations [3,25,26,27,28,30],

and by the following examples from ordinary numerical analysis.

The processes of interpolation and numerical integration and differentia-
tion can be regarded as coming from some linear functional A applied to the
function f under consideration. Thus, one writes

n

P
(7.1) - T oafx) ¢ (2) e, £e [ab] ,
i=1 "

where the remainder term ¢t(f£) 1is some linear combination of derivatives

of £ at £, for example,

(7.2) t(E) = cpf"’l’(c) :

where the constant Ur i1s known. The linear combination of values of f,
n

(7.3) Rf = J a fi(x,)
. i i
i=]

is usually called the rule of numerical interpolation, integration, or

differentiation, etc. Taking an interval extension of (7.1) gives, for
X = (d,bl,

. ¥ 1y
(7.4) Af ¢ ig;l AF(x,) + (;)-r(x) ;

where the interval on the right can be computed automatically by use of the
software described in this paper. Thus, this furnishes a complete error
analysis of the use of the rule Rf given by (7.3) in order to calculate the J
functional Af. This type of analysis is carried out in the programs of i
Gray and Rall [12,13,14) for bounding the error of various rules for the
numerical integration of functions of a single variable. For example, for

Simpscn's rule, the form of (7.4) is

b

5
) . wia,b] A+B _ twlab))” iv
(7.5 £ £(x)dx € - [Y(A) + ay 3) + v(a)] 2880 Y ([2,b])

where wla,b] = b - a is the width of the interval ([a,b].

Although the speed of the computer blurs the distinction between a priori
and a posteriori error estimations, an expression of the form can furnish
either. For example, (7.4) can be computed for a small value of n, and
then its width can be extrapolated to larger values of n, as the width of
T(X) from the original computation will always be an upper bound for
T(xn), xn C X. This method for optimization of time or accuracy in
numerical integration is implemented in the program (13). A posteriori error
estimates, of course, are always available directly from the computation of
(7.4). Once it has been established that Af € (c,d], one may take as an
estimate for Af one of the numbers

{ a+b 2ab
| (7.6) mla,b) = 2=, hla,b) = 5, glab) = Vab,

«h' -h minimize the absolute error, relative error, or maximizes the relative
precision in the sense of Olver [32], respectively. Interval results can be

: -] B=

intersected, if more than one is available, to obtain a possible improve-
ment (12,13).

As an example of the application of this program, the region to the left
and below of the staircase in Figure 7.1 shows where 5-place accuracy for the
calculation of the elliptic integral of first kind

s 8 -
(7.7) F(k,8) = [(1 - k’sin’0) a0

0
can be guaranteed, using Simpson's rule with 7 nodes (three times on [0,¢]).
This guarantee includes roundoff on the UNIVAC 1110 in single precision
(to about 9 decimal digits), and should be valid for calculators carrying
more places. A result of this kind might be useful in the design of software
for programmable hand calculators, however, the important point is that the
results shown in Figure 7.1 were obtained interactively at a computer terminal.
The user supplied the integrand of (7.7), and then various values of k and
¥. The detailed error analysis was carried out by the computer, using the
program [13]).

The error of numerical differentiation can be analyzed in the same way.
It may seem strange to use an analytic differentiator for this purpose; how-
ever, it may turn out to be cheaper or more suitable to the input data to
calculate derivatives as linear combinations of function values than to
execute the differentiation subroutine, once the rule for numerical analysis
has been established to be of sufficient accuracy for the functions considered.
Here again, the elaborate differentiation and interval software is used for
error analysis in the design of a program for production computation, not for
the computation itself.

8. Conclusions and predictions. The above illustrations give an idea of the

power and usefulness of software for automatic differentiation, however, in
spite of its portability, it is not widely accepted at the present time Ly
numerical analysts. One hears objections such as: (i) It won't work;

(ii) it won't work well; or (iii) a problem is known to which it does not
apply. Objections (i) and (ii), coming from people who use formula translators
routinely, are demolished by the facts that differentiators are based on the
same principlc. as translators and have been used with success at the
Mathematics Research Center and elsewhere for more than a decade. Object.c:

-16=

-17-

P(v,k) by Simpson's rule with 7 nodes.

A
1.00
v .2]
sins b Flv.k) = (!, (1 - x’sin“e) “ae
0.67
o.44 }
0.31 p
0.24 }
0.18 F Region of S-place accuracy.
0.14 b
0.0 — —— . + + - -
o* 20° 0° w0 s0* 60° 70° e0*

Pigure 7.1. Region of guaranteed S-place accuracy for calculation of

(111) 1s simply a negative, nonconstructive remark which applies to any method

or tool. A more positive approach would be to think of problems to which this

software does apply, as the examples given above indicate.

There are,of course, alternatives to the use of automatic differentiators.
One 1s to derive and code all needed derivatives by hand. This is a dull,
routine task, highly prone to error. Thus, to make as much use of the speed
and accuracy of the computer as possible, such mechanical jobs should be
turned over to it. The other alternative is to avoid the use of derivatives
and Taylor series altogether. This has been done with great success in a
number of areas, and the resulting finite difference methods have enriched both
the theory and practice of numerical analysis. However, there is a long
tradition of the use of series and derivatives in numerical analysis, dating
back at least to the 1730 book by Stirling [43]). Rather than turn one's back
on this long history of development, it would seem to be better to make as
much use of the power of mathematical analysis as possible, and employ deriva-
tives and series where appropriate.

Another point brought up in this paper is the close relationship in
applications between automatic differentiation and interval arithmetic, even
though they are quite different in concept and implementation. The reason for
this is that in floating-point (real) arithmetic, the derivative can often be
successfully approximated by the difference quotient

£{x + h) =~ £(x)

(8.1) FEx) ™ h

Numerical analysts working with finite derivatives, however, know that h
cannot be taken too small in (8.1), as the significant digits in f(x + h)

and f(x) will cancel out, and the resulting roundoff error will be multiplied
by the huge number 1/h to give a result of no significance whatever. It is

known that if f£(x) can be calculated with absolute precision n, then

h = vn is as small as h should be taken. Thus, a somewhat inaccurate value
of the derivative is the price paid to keep the computation meaningful. How-
ever, this type of inaccuracy is of no consequence in many applications. 1In
interval arithmetic, however, one has

(8.2) [0,1) = [0011 - ‘-101) '

so cancellation is replaced by a widening of intervals, which is only
aggravated by multiplying by large numbers. This "painful honesty" of interval

T

arithmetic makes .. more suitable for use with derivatives than difference
quotient approximations such as (8.1).

From an historical standpoint, formula translators did not come into
general use until hardware for floating-point arithmetic became widely avail-
able. Then, one could declare a variable to be "real", and forget the scaling,
etc. which is better done in machine or assembly language for fixed-point
computations. Because of the intimate relationship between interval analysis
and derivatives, one may have to wait for hardware for interval arithmetic
before differentiation by software is widely accepted.

Finally, the present breed of automatic differentiators, as all human
products, can be improved. At present, this seems to be a task which is too
exotic for numerical analysts and too mundane for computer scientists. How-
ever, as with formula translators, one can expect improvements to come with

use and coupled with advances in hardware and computer science.

REFERENCES

1. Bauer, F. L.: Computational graphs and rounding error, SIAM J. Numer.
Anal. 11 (1974), 87-96.

2. @Binstock, W., Hawkes, J., and Hsu, N.-T.: An interval input/output package
for the UNIVAC 1108, Tech. Sum. Rpt. No. 1212, Math. Res. Center, Univ.
Wisconsin-Madison, Sept., 1973,

3. Braun, J. A. and Moore, R. E.: A program for the solution of differential
eguations using interval arithmetic (DIFEQ) for the CDC 3600 and 1604,
Tech. Sum. Rpt. No. 901, Math. Res. Center, Univ. Wisconsin-Madison,

June, 1968.

4. Conte, 5. D.: Elementary Numerical Analysis: An Algorithmic Approach,
New York: McGraw=-Hill, 1965.

w
.

Conte, S. D. and de Boor, Carl: Elementary Numerical Analysis: An
Algorithmic Approach, 24 Ed., New York: McGraw-Hill, 1972.

4. Crary, F. D.: Language extensions and precompilers, Tech. Sum. Rpt. No.
1319, Math. Res. Center, Univ. Wisconsin-Madison, Feb., 1973.

7. Crary, F. D.: The AUGMENT precompiler. I. User information. Tech. Sum.
Fpt. No. 1469, Math. Res. Center, Univ. Wisconsin-Madison, Dec., 1974,
revised Apr., 1976.

8. Crary, F. D.: The AUGMENT precompiler. II. Technical documentation, Tech.
Sum. Rpt. No. 1470, Math. Res. Center, Univ. Wisconsin-Madison, Oct., 1975.

10.

11.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Crary, F. D. and Ladner, T. D.: A simple method of adding a new data type
to FORTRAN, Tech. Sum. Rpt. No. 1605, Math. Res. Center, Univ. Wisconsin-
Madison, May, 1970.

Gray, Julia H. and Rall, L. B.: NEWTON: A general purpose program for ’
solving nonlinear systems, Tech. Sum. Rpt. No. 790, Math. Res. Center,
Univ. Wisconsin-Madison, Sept., 1967.

Gray, Julia H. and Rall, L. B.: NEWION: A general purpose program for
solving nonlinear systems, Proc. 1967 Army Numer. Anal. Conf., pp. 11-59.
Durham, N.C.: Army Res: Office, 1967.

Gray, Julia H. and Rall, L. B.: A computational system for numerical
integration with rigorous error estimation, Proc. 1974 Army Numer. Anal.
Conf., pp. 341-355. Durham, N.C.: Army Res. Office, 1974.

Gray, Julia H. and Rall, L. B.: INTE: A UNIVAC 1108/1110 program for
numerical integration with rigorous error estimation, Tech. Sum. Rpt. No.
1428, Math. Res. Center, Univ. Wisconsin-Madison, Oct., 1975.

Gray, Julia H. and Rall, L. B.: Automatic Euler-Maclaurin integration,
Proc. 1976 Army Numer. Anal. and Comp. Conf., pp. 431-444. Research
Triangle Park, N.C.: Army Res. Office, 1976.

Gray, Julia H. and Reiter, Allen: Compiler of differentiable expressions
(CODEX) for the CDC 3600, Tech. Sum. Rpt. No. 791, Math. Res. Center,
Univ. Wisconsin-Madison, Dec., 1967.

Kantorovich, L. V.: Functional analysis and applied mathematics, Uspehi
Mat. Nauk 3 (1948), 89-185 (Russian). Tr. by C. D. Benster, Natl. Bur.
Std. Rpt. No. 1509, Washington, 1952.

Kantorovich, L. V.: On a mathematical symbolism convenient for performing
machine calculations, Dokl. Acad. Nauk SSR 113 (1957), 738-741 (Russian).

Kedem, G.: Automatic differentiation of computer programs, Tech. Sum. Rpt.
No. 1697, Math. Res. Center, Univ. Wisconsin-Madison, Nov., 1976.

Knapp, H. and Wanner, G.: Numerical solution of ordinary differential
equations by Groebner's method of Lie-series, Tech. Sum. Rpt. No. B8O,
Math. Res. Center, Univ. Wisconsin-Madison, June, 1968.

Knapp, H. and Wanner, G.: LIESE: A program for ordinary differential
equations using Lie-series, Tech. Sum. Rpt. No. 881, Math. Res. Cernter,
Univ. Wisconsin-Madison, June, 1968.

Knapp, H. and Wanner, G.: LIESE II: A program for ordinary differentiul .
equations using Lie-series, Tech. Sum. Rpt. No. 1008, Math. Res. Center,
Univ. Wisconsin-Madison, Aug., 1969.

Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit
Fehlerschranken, Computing 4 (1969), 187-201.

- LM

26,

27.

28.

29.

30.

3l1.

32.

33.

34.

35.

36.

37.

38.

Kuba, Dennis and Rall, L. B.: A UNIVAC 1108 program for obtaining rigorous
error estimates for approximate solutions of systems of equations, Tech.
Sum. Rpt. No. 1168, Math. Res. Center, Univ. Wisconsin-Madison, Jan., 1972.

Li, T. Y. and Yorke, J. A.: A simple, reliable numerical algorithm for
following homotopy paths (to appear), Proc. MRC Symp. on Analysis and
Computation of Fixed Points, New York: Academic Press, 1979.

Moore, R. E.: The automatic analysis and control of error in digital
computation based on the use of interval numbers, (33], pp. 61-130, 1965.

Moore, R. E.: Automatic local coordinate transformations to reduce the
growth of error bounds in interval computation of solutions of ordinary
differential equations, [34), pp. 103-140, 1965.

Moore, R. E.: Interval Analysis. Englewood Cliffs, N.J.: Prentice-Hall,
1966.

Moore, R. E.: Methods and Applications of Interval Analysis. Philadelphia:
SIAM Publications, 1979.

Moore, R. E.: A test for existence of solutions to nonlinear systems,
SIAM J. Numer. Anal. 14 (1977), 611-615.

Moore, R. E., Davison, J. A., Jaschke, H. R., and Shayer, S.: DIFEQ
integration routine - user's manua)l, Tech. Rpt. LMSC 6-90-64~6, Lockheed
Missiles and Space Co., Palo Alto, Calif., 1964.

Nickel, X.: On the Newton method in interval analysis, Tech. Sum. Rpt.
No. 1136, Math. Res. Center, Univ. Wisconsin-Madison, Dec., 1971.

Olver, F. W. J.: A new approach to error arithmetic, SIAM J. Numer.
Anal. 15 (1978), 368-393.

Rall, L. B. (BEd.): Error in Digital Computation, Vol. 1. New York:
John Wiley & Sons, 1965.

Rall, L. B. (Ed.): Error in Digital Computation, Vol. 2. New York:
John Wiley & Sons, 1965.

Rall, L. B.: Computational Solution of Nonlinear Operator Equations.
New York: John Wiley & Sons, 1969.

Rall, L. B.: A comparison of the existence theorems of Kantorovich and
Moore, Tech. Sum. Rpt. No. 1944, Math. Res. Center, Univ. Wisconsin-
Madison, March, 1979.

Rall, L. B, and Wanner, G.: Experience with Lie series, Meth. und
Verfahren der Math. Physik 5 (1971), 29-42.

Reiter, Alan: Automatic generation of Taylor coefficients (TAYLOR). Prog.
No. 3, Math. Res. Center, Univ. Wisconsin-Madison, July, 1965.

39.

41,

a2,

43.

44.

45.

46.

47.

48,

49.

Reiter, Alan: Interval arithmetic package (INTERVAL), Prog. No. 2,
Math. Res. Center, Univ. Wisconsin-Madison, June, 1965.

Reiter, Alan: Compiler of differential expressions (CODEX), Prog. No. 1,
Math. Res. Center, Univ. Wisconsin~Madison, Aug., 1965,

Reiter, Allen: Automatic generation of Taylor coefficients (TAYLOR) for
the CDC 1604, Tech. Sum. Rpt. No. 830, Math. Res. Center, Univ. Wisconsin-
Madison, Nov., 1967.

Reiter, Allen: Interval arithmetic package (INTERVAL) for the CDC 1604
and CDC 3600, Tech. Sum. Rpt. No. 794, Math. Res. Center, Univ. Wisconsin-
Madison, Jan., 1979.

Stirling, James: Methodus Differentialis: sive Tractatus de Summatione
et Interpolatione Serierum Infinitarum. London: Typis, Gul. Bowyer,
Impensis, G. Strahan, 1730.

Stummel, F.: Rounding error analysis of numerical algorithms, to appear.

Wertz, H. J.: SUPER-CODEX (Supervisor plus a compiler of differentiable
expressions, Math. Res. Center, Univ. Wisconsin-Madison, June, 1968.

Wertz, H. J.: SUPER-CODEX: Analytic differentiation of FORTRAN state-
ments, Rpt. No. TOR-0172(9320)-12, Aerospace Corporation, El Segundo,
Califs, April, 1972.

Yohe, J. M.: The interval arithmetic package, Tech. Sum. Rpt. No. 1755,
Math. Res. Center, Univ. Wisconsin-Madison, June, 1977.

Yohe, J. M.: Implementing nonstandard arithmetics, SIAM Rev. 21 (1979),
34-56.

Yohe, J. M.: Portable software for interval arithmetic, to appear.

LBR/scr

(s

JECURITY CLASSIFICATION OF TwiS PAGE (When Dare Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEPOR! COMPLETING FORM

1. REPORT NUMBER

Tz GOVY ACCESS NUMBER
1976 | Jechr.ca
Y ik mvm OD COVERED
"PLICATIONS OF SOFTWARE FOR ‘Arummx‘rc ummary eﬂ o specific
4 - LM B : re ng od
_s‘FFI»M NTIATION IN NUMERICAL COMPUTATION L RO EEeRe She Rt e
-~ - ‘.
Y AUTHOR(s) 75 g Couﬁuc OR GRANT NUMBER(s)
5
B/Rd“ / (/é/DAAGz%?s-c-,odu

$ PERFORMING ORGANIZATION NAME AND ADDRESS
Mathematics Research Center, University of

IOF

RAM ELEMENT. PROJECT, TASK
A& WORK UNIT NUMBERS

610 Waln
Madis: !

ut Street
1, Wisconsin 53706

7 (Numerxcal Analysis)

Wisconsin | g (Computer Science)

COﬂY"OLLOﬂG QFFICE NAME AND ADDRESS

U, S. Army Research Office '1\ p-
. Q. Box 12 , ALS [
Researc Triaﬂg,le Park, North C«u;ohna 27709 22
"ECE 'oamf TGENCY NAME & ADDR ing Oftice) | '8. SECURITY CLASS. (of this report)
/2. UNCLASSIFIED

Sa. otc& ASSIFICATION DOWNGRADING
SCHEDULE

6 OISTH BUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

(4] mae-

TSR-177¢ |

17 OISTHIBUTION ;Y\&n»]/]ﬂ the sbetract entared in Block 20, il different from Rw)

A

e

SUPPLEMENTARY NOTES

VEY WORDS (Contime on reverse side If necessary and Identify by block number)

Automatic

differentiation

b e
an

Taylor coefficient generation
Error estimation

Differential equations
Nonlinear systems

Optimization
Numerical integration
Interval analysis

merical computation.

computation.

wi?

ABSTYHACYT [Continue an reverse side If necessary and Identify by block number)

At present, software for formula translation is used routinely in
On the other hand, although software for differentia-
t on of formulas is easy to construct and widely available, many numerical
walysts seem to be unaware of its existence and potential for numerical
A simple procedure for formula translation and differentiation
be described, and some significant applications will be indicated.
srdinary computation, these include solution of ordinary and partial differ-
ential equations by series methods (Taylor and Lie series, for example),

In

(V)

roRw
AR L

1473

A3l 200

EDI1TION OF 1 NOV 85 1S OBSOLET UNCusslnED
‘ucum' TV CLASSIFICATION OF THIS PAGE (When Ders Entered)

20. ABSTRACT - Cont'd.

solution of nonlinear systems of equations by Newton's method and its variants,
and nonlinear optimization (constrained and unconstrained). Together with
interval analysis, differentiation can be used to determine properties of func-
tions and thus automate the application of certain theorems, such as ones for
existence of fixed points of n-dimensional operators or solutions of nonlinear
systems of equations. Another large field of application of differentiation

is to automatic error analysis, either using the graph structure of the computa-
tion, or interval analysis. An example is given of a program for numerical
integration in which automatic differentiation and interval analysis are combined
to provide a priori and a posteriori error bounds for the results.

E i
4
k1

I

